坐標(biāo)轉(zhuǎn)換中的七參數(shù)詳談,測(cè)量員值得收藏
坐標(biāo)轉(zhuǎn)換永遠(yuǎn)是測(cè)繪工作離不開的一個(gè)話題。坐標(biāo)轉(zhuǎn)換的方法很多,有的方法可以用相應(yīng)的參數(shù)來描述,其中使用較廣的一個(gè)是七參數(shù)。七參數(shù)大多用于不同坐標(biāo)系統(tǒng)間的基準(zhǔn)變換。
七參數(shù)的由來
對(duì)于非測(cè)繪的專業(yè)人士可能不太能理解“基準(zhǔn)”這個(gè)詞語。簡(jiǎn)單的理解就是坐標(biāo)數(shù)值的零點(diǎn),比如空間坐標(biāo)的原點(diǎn),再比如大地坐標(biāo)的起算面。定義一個(gè)坐標(biāo)系的三個(gè)基本要素是原點(diǎn)、指向、尺度。原點(diǎn)即坐標(biāo)系的原點(diǎn),指向即坐標(biāo)軸的指向,尺度即長度單位和橢球。由于各個(gè)坐標(biāo)系,或者說定義坐標(biāo)系的組織所確定的這三個(gè)要素都有所區(qū)別,這就產(chǎn)生基準(zhǔn)的變換,并且使用七參數(shù)在空間坐標(biāo)中進(jìn)行基準(zhǔn)變換。
什么是七參數(shù),又有哪七個(gè)參數(shù)呢?
七參數(shù)主要分為3類參數(shù),旋轉(zhuǎn)、縮放和平移。縮放,表示為k,主要是由于測(cè)量誤差產(chǎn)生的;平移為3個(gè)坐標(biāo)軸方向上的平移,表示為dX、dY、dZ,這是由于原點(diǎn)不一樣產(chǎn)生的;旋轉(zhuǎn)為3個(gè)坐標(biāo)軸的旋轉(zhuǎn),表示為rX、rY、rZ,這是坐標(biāo)軸指向不一致產(chǎn)生的。
值得注意的是,旋轉(zhuǎn)存在方向的問題;不同的軟件,或者說不同地域的人的習(xí)慣差異,致使旋轉(zhuǎn)方向不一致,比如南方集團(tuán)與天寶七參數(shù)旋轉(zhuǎn)方向一致,但與ArcGIS的就相反。因此同一個(gè)七參數(shù)在不同軟件中使用時(shí)需要考慮旋轉(zhuǎn)方向的問題,適當(dāng)?shù)臅r(shí)候做相應(yīng)的變換才能完成正確的坐標(biāo)轉(zhuǎn)換,即旋轉(zhuǎn)方向定義相反時(shí),旋轉(zhuǎn)角取其相反數(shù)。
平移的單位為對(duì)應(yīng)的長度單位,我們常用米;旋轉(zhuǎn)的單位為秒,原因是各個(gè)坐標(biāo)系間指向的差異都很小;縮放的單位是PPM(part(s) per million,百萬分之一),也就是說縮放是一個(gè)特別小的數(shù)值,這是因?yàn)樽鴺?biāo)轉(zhuǎn)換前我們都會(huì)率先統(tǒng)一單位,所以縮放數(shù)值也就體現(xiàn)了測(cè)量誤差等因素的影響。
七參數(shù)的應(yīng)用
參數(shù)的應(yīng)用過程細(xì)分為旋轉(zhuǎn)、縮放、平移三個(gè)過程。這三個(gè)過程的順序是如何的,我們來看一下公式:
簡(jiǎn)化為:
上式中,X1為原始空間坐標(biāo),X2為目標(biāo)空間坐標(biāo),K為縮放,R為旋轉(zhuǎn),dX為平移。
可以看出,該順序是先旋轉(zhuǎn),再縮放,最后平移。當(dāng)然與之相反的是先平移,再縮放,最后旋轉(zhuǎn),這是一個(gè)可逆的過程,方便了兩個(gè)空間坐標(biāo)來回的轉(zhuǎn)換。這里為了方便說明,我們將旋轉(zhuǎn)、縮放、平移定義為七參數(shù)的正應(yīng)用;平移、縮放、旋轉(zhuǎn)定義為七參數(shù)的反應(yīng)用。
我們可以看看EPSG對(duì)一個(gè)坐標(biāo)系定義:
+proj=longlat+ellps=krass+towgs84=28,-121,-77,0,0,0,0
其中七參數(shù)作為基準(zhǔn)的定義,叫做towgs84,字面理解是轉(zhuǎn)換到wgs84所需的七參數(shù),作用同樣是為了不同坐標(biāo)系間的基準(zhǔn)變換。EPSG在進(jìn)行基準(zhǔn)轉(zhuǎn)換前必須要說明原始的towgs84和目標(biāo)的towgs84兩個(gè)七參數(shù)。
那么問題來了!
兩個(gè)七參怎么進(jìn)行基準(zhǔn)變換呢?為什么和WGS84有關(guān)系呢?在對(duì)比我們的熟悉的工程之星和SGO的坐標(biāo)轉(zhuǎn)換,通常都只有使用一個(gè)七參的情況,這又如何理解呢?
首先,工程之星和SGO大多的轉(zhuǎn)換場(chǎng)景都是WGS84坐標(biāo)轉(zhuǎn)換到XIAN80、Beijing54、CGCS2000等坐標(biāo),這里使用的七參數(shù)是原始坐標(biāo)系直接到目標(biāo)坐標(biāo)系的七參數(shù);而EPSG定義的七參數(shù)(基準(zhǔn))是坐標(biāo)系本身轉(zhuǎn)換到WGS84坐標(biāo)的七參數(shù),只要兩個(gè)坐標(biāo)系都知道如何轉(zhuǎn)換到WGS84坐標(biāo),其實(shí)就間接的知道這兩個(gè)坐標(biāo)系間的基準(zhǔn)變換。
至于為什么是WGS84,這是歷史原因造成的。因?yàn)閃GS84是最先建立起來的全球坐標(biāo)系統(tǒng),衛(wèi)星定位大多得到的是WGS84的空間或者大地坐標(biāo),為了能轉(zhuǎn)換為自己的定義坐標(biāo)系下的坐標(biāo),都需要自身建立與WGS84的關(guān)系。
最后一問題,EPSG如何用兩個(gè)七參數(shù)進(jìn)行基準(zhǔn)變換。回到之前七參數(shù)的正反應(yīng)用問題,原始坐標(biāo)系的towgs84將原始坐標(biāo)轉(zhuǎn)換為WGS84的坐標(biāo)(以下簡(jiǎn)稱84坐標(biāo)),這里是正應(yīng)用。得到84坐標(biāo)后使用目標(biāo)坐標(biāo)系的towgs84得到最終的坐標(biāo),這里是反應(yīng)用。其實(shí)我們的工程之星和SGO坐標(biāo)轉(zhuǎn)換的原始坐標(biāo)系和目標(biāo)坐標(biāo)系都可以指定七參數(shù),只是使用的頻率較低常被我們忽略。但與前述的過程相反,原始坐標(biāo)系的七參數(shù)是反應(yīng)用,目標(biāo)坐標(biāo)系的七參數(shù)是正應(yīng)用。隨著我們南方的發(fā)展壯大以及與國際的進(jìn)一步接軌,使用兩個(gè)七參數(shù)進(jìn)行基準(zhǔn)變換的場(chǎng)景會(huì)越來越多,比如我們的新軟件GIStar,我們需要好好的理解其原理和過程,同時(shí)清楚現(xiàn)有功能和新功能的差異,使坐標(biāo)轉(zhuǎn)換更加得心應(yīng)手。
七參數(shù)的細(xì)節(jié)
與towgs84相反的是fromwgs84,在旋轉(zhuǎn)和縮放很小的前提下,兩者互為相反數(shù)。fromwgs84可以參考天寶的坐標(biāo)轉(zhuǎn)換工具。如何區(qū)別towgs84和fromwgs84呢,其實(shí)很好理解,七參數(shù)正應(yīng)用使非84坐標(biāo)轉(zhuǎn)換為84坐標(biāo),那么該七參數(shù)為towgs84;七參數(shù)正應(yīng)用使84坐標(biāo)轉(zhuǎn)換為非84坐標(biāo),那么該參數(shù)為fromwgs84。我們工程之星和SGO以wgs84為原坐標(biāo)系的轉(zhuǎn)換場(chǎng)景,其使用的七參數(shù)都為fromwgs84。
回到前面提到的公式,該場(chǎng)景下X1為84坐標(biāo),X2為非84坐標(biāo),例如XIAN80,那么k、R和dX組成的七參數(shù)為fromwgs84,X2與X1調(diào)換,則為towgs84。
七參數(shù)的求解
求解7個(gè)參數(shù),我們至少需要7個(gè)方程,一對(duì)空間坐標(biāo)可以列3個(gè)方程,也就是說我們需要至少3對(duì)點(diǎn),通過最小二乘的方法解算出七參數(shù)。當(dāng)然點(diǎn)的數(shù)量也是有講究,不是剛好3個(gè)點(diǎn)就好,也不是點(diǎn)越多越好,具體需要參考實(shí)際情況。
七參數(shù)作為基準(zhǔn)變換的工具,其適用較大的區(qū)域乃至全球,我們需要在該區(qū)域選擇均勻分布的控制點(diǎn)來求解七參數(shù)。小區(qū)域所求解的七參數(shù)是不適用的。這里再提一下towgs84和fromwgs84,原為非84坐標(biāo),目標(biāo)為84坐標(biāo),所求得的七參數(shù)為fromwgs84,相反則為towgs84。
以上為坐標(biāo)轉(zhuǎn)換七參數(shù)的介紹,希望對(duì)大家有所幫助。
更多相關(guān)
微傾式水準(zhǔn)儀、自動(dòng)安平水準(zhǔn)儀和電子水準(zhǔn)儀使用方法!
一、水準(zhǔn)測(cè)量原理 工程上常用的高程測(cè)量方法有幾何水準(zhǔn)測(cè)量、三角高程測(cè)量、GPS測(cè)高及在特定對(duì)象和條件下采用的物理高程測(cè)量,其中幾何水準(zhǔn)測(cè)量是目前高程測(cè)量中精度最高、應(yīng)用最普遍的測(cè)量方法。水準(zhǔn)測(cè)量...
《GNSS技術(shù)藍(lán)皮書》發(fā)布
《GNSS技術(shù)藍(lán)皮書》,全書共分四章:第一章概論,交待此書的由來和組成;第二章系列文章的分類與歸總,對(duì)于可能技術(shù)趨勢(shì)進(jìn)行初步排隊(duì);第三章GNSS技術(shù)趨勢(shì)分析研究,明確重點(diǎn)發(fā)展趨勢(shì),逐個(gè)進(jìn)行剖...
如何判定混凝土主體結(jié)構(gòu)質(zhì)量好壞?
【依據(jù)GB50204-2015《混凝土結(jié)構(gòu)工程施工質(zhì)量驗(yàn)收規(guī)范》,混凝土結(jié)構(gòu)子分部工程施工質(zhì)量驗(yàn)收,除了觀感質(zhì)量應(yīng)合格外,結(jié)構(gòu)實(shí)體檢驗(yàn)也必須合格。】 結(jié)構(gòu)實(shí)體檢驗(yàn)主要針對(duì)涉及混凝土結(jié)...
徠卡RTC360三維激光掃描儀不動(dòng)產(chǎn)權(quán)籍調(diào)繪方案
一、背景 第三次全國國土調(diào)查(簡(jiǎn)稱三調(diào))的初步成果已經(jīng)基本完成,目前已進(jìn)入數(shù)據(jù)核實(shí)、整改、補(bǔ)充、舉證、完善階段。不動(dòng)產(chǎn)權(quán)籍調(diào)查是三調(diào)的主要任務(wù),也是不動(dòng)產(chǎn)登記的前提和基礎(chǔ),事關(guān)老百姓的核心權(quán)益。...
第三極立體觀測(cè)布下“天羅地網(wǎng)”
“監(jiān)測(cè)第三極水循環(huán),除了跟蹤氣溫、濕度、氣壓,降水、風(fēng)速等傳統(tǒng)氣象要素外,還需要通過測(cè)量大氣水汽中氫和氧穩(wěn)定同位素比率來獲得更多關(guān)于水循環(huán)的信息。”第二次青藏科考首席科學(xué)家姚檀棟院士表示,科考隊(duì)這...
專業(yè)測(cè)量設(shè)備千尋星矩SR1RTK:在各種測(cè)量場(chǎng)景中表現(xiàn)如何?
千尋自主RTK設(shè)備:“星矩SR1”已經(jīng)正式上線,作為一款專業(yè)的高精度GNSS接收機(jī),千尋星矩SR1支持北斗、GPS、GLONASS、GALILEO四大衛(wèi)星系統(tǒng),可以被用于對(duì)測(cè)量精度要求較高的地圖測(cè)...
RTK設(shè)備和CORS網(wǎng)絡(luò)的原理和用途介紹
RTK設(shè)備的意思是,RealTimeKinematicPositioning,中文翻譯是實(shí)時(shí)運(yùn)動(dòng)學(xué)工具設(shè)備。RTK設(shè)備使用GPS衛(wèi)星信號(hào)載波相位,實(shí)時(shí)校正GPS位置信息,大大提高了定位和測(cè)量精度...
“厲害了!1+1”丨中鐵咨詢集團(tuán)“鐵衛(wèi)自動(dòng)化監(jiān)測(cè)系統(tǒng)”,聯(lián)合中緯測(cè)量機(jī)器人,做工程監(jiān)測(cè)眼睛!
隨著中國城市化建設(shè)不斷推進(jìn),鐵路、高速、水利大壩等各類有關(guān)民生的基建項(xiàng)目也應(yīng)運(yùn)而生,如何通過科學(xué)可靠的方式對(duì)這些基建項(xiàng)目開展監(jiān)測(cè)工作,實(shí)現(xiàn)提前預(yù)警,為工程安全保駕護(hù)航,也成為各行各業(yè)關(guān)注的重點(diǎn)。為響應(yīng)...